在期权投资的道路上,Vega老师已耕耘七年。在这期间,他接听了无数投资者的咨询电话,其中反复被问及的问题主要集中于以下两点:
“当标的价格上涨1%时,我购买的认购期权能有多少收益?”
以及
“若标的价格下跌1%,认沽期权的收益将如何变动?”
尽管国内场内期权交易自2015年起便已启动,但市场上大多数投资者对于期权价格变动的理解仍显不足。虽然影响期权价格的因素众多,但标的物的变动无疑是其中影响最为显著的一个。那么,今天我们就来深入探讨一下标的变化与期权价格之间的关系。
让我们理解一个概念——杠杆。
在物理学中,杠杆是一种“力的放大器”,正如阿基米德所言,给予一个恰当的支点,我们便能撬动地球。这里的杠杆原理在金融市场中同样适用。金融杠杆,简单来说,就是一种“乘号”工具,能放大投资结果。在杠杆的作用下,无论是收益还是亏损,都会以固定的比例增减。
这种金融杠杆在股票、期货、外汇等市场随处可见。比如,我们用100元作为本金,再通过券商融资100元,将这200元用于股票投资。我们的杠杆倍数为2倍。若股票价格上涨10%,那么我们的收益将是股票涨幅与杠杆倍数的乘积,即20%。
再来看期权。期权的杠杆作用是怎样的呢?要了解这个问题,我们以一个具体例子进行说明。
假设在2020年8月6日,300ETF的标的收盘价为4.813元。如果我们购买了一份认购期权,金为0.1309元,那么我们实际投入的资金与对应标的资产的总价值之比,即为我们所说的名义杠杆。
具体计算为:4.813元/0.1309元=36.77倍。但这并不意味着标的上涨1%,认购期权就能上涨36.77%。因为期权的价值变化与标的物的价格变化并非线,而是呈现出非线性的特点。
对于同一期权合约而言,当标的物价格处于不同的区间时,该合约的杠杆大小会有显著差异。这就像一辆车在高速公路上可以快速行驶,但在拥堵的道路上只能缓慢前行。
在期权的杠杆计算中,Delta是一个重要的参数。Delta用于衡量标的物价格每变化1个单位时,期权价格的变化情况。Delta值越大,期权价格随标的物价格的变化越明显。
在实际操作中,我们需要将名义杠杆与Delta相结合,计算出期权的实际杠杆。具体公式为:期权的实际杠杆倍数=标的价格/金×Delta。
在交易过程中,应留意并区分交易系统显示的是名义杠杆还是实际杠杆。
对比不同行权价的认购合约,我们会发现即使极度虚值的认购期权名义杠杆看似极高,但其实际杠杆可能并不高。这提醒我们在交易时应根据实际杠杆而非仅凭名义杠杆做出决策。
说到这里,相信你对期权价格变化与标的物之间的关系有了更深入的理解。但新的问题又来了:为什么实际交易中期权价格变化与计算结果有时会存在出入?这背后的原因又是什么呢?
让我们留个悬念,下周再揭晓答案。
不构成任何投资建议
期衍对使用本文观点所导致的任何损失不承担责任
投资有风险,入市需谨慎